LeetCode 1143. 最长公共子序列
题目描述
思路分析
dp[i][j]
表示text1[0:i]
和text2[0:j]
最长公共子序列的长度
参考代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
func longestCommonSubsequence(text1 string, text2 string) int {
m, n := len(text1), len(text2)
dp := make([][]int, m+1) // dp[i][j] 表示 text1 的前 i 个字符与 text2 的前 j 个字符的最长公共子序列的长度
for i := 0; i <= m; i++ {
dp[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if text1[i-1] == text2[j-1] {
dp[i][j] = dp[i-1][j-1] + 1
} else {
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
}
}
}
return dp[m][n]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
}
CC BY-NC-SA 4.0
许可协议,转载请注明出处!
本博客所有文章除特别声明外,均采用